044 209 91 25 079 869 90 44
Notepad
The notepad is empty.
The basket is empty.
Free shipping possible
Free shipping possible
Please wait - the print view of the page is being prepared.
The print dialogue opens as soon as the page has been completely loaded.
If the print preview is incomplete, please close it and select "Print again".

Completeness Theorems and Characteristic Matrix Functions

Applications to Integral and Differential Operators
BookPaperback
Ranking4439inMathematik
CHF181.00

Description

This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.
More descriptions

Details

ISBN/GTIN978-3-031-04510-3
Product TypeBook
BindingPaperback
Publishing date15/06/2023
Edition1st ed. 2022
Series no.288
Pages368 pages
LanguageEnglish
SizeWidth 155 mm, Height 235 mm, Thickness 20 mm
Weight557 g
Article no.22066737
CatalogsBuchzentrum
Data source no.44595113
Product groupMathematik
More details

Series

Author

Marinus A. Kaashoek is a Dutch mathematician, and Emeritus Professor Analysis and Operator Theory at the Vrije Universiteit in Amsterdam. Kaashoek's research interests are in the field of Analysis and Operator Theory, and various connections between Operator Theory, Matrix Theory and Mathematical Systems Theory. In particular, Wiener-Hopf integral equations and Toeplitz operators, their nonstationary variants, and other structured operators, such as continuous operator analogs of Bezout and resultant matrices. State space methods for problems in analysis are shown to be useful. Also metric constrained interpolation problems and completion problems for partially given operators, including relaxed commutant lifting problems, are proved to be solvable.


Sjoerd M. Verduyn Lunel is Professor of Applied Analysis at Utrecht University. He held positions at Brown University, Georgia Institute of Technology, University of Amsterdam, Vrije Universiteit Amsterdam, and Leiden University. His research interests are at the interface of Analysis and infinite dimensional Dynamical Systems Theory with focus on the theory of Functional Differential Equations. He was co-Editor-in-Chief of Integral Equations and Operator Theory (2000-2009) and is currently associate editor of SIAM Journal on Mathematical Analysis and of Integral Equations and Operator Theory. In 2012 he was elected member of the Royal Holland Society of Sciences and Humanities and in 2014 he was appointed honorary member of the Indonesian Mathematical Society.